Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbcom2v2 | GIF version |
Description: Lemma for proving sbcom2 1863. It is the same as sbcom2v 1861 but removes the distinct variable constraint on 𝑥 and 𝑦. (Contributed by Jim Kingdon, 19-Feb-2018.) |
Ref | Expression |
---|---|
sbcom2v2 | ⊢ ([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcom2v 1861 | . . 3 ⊢ ([𝑤 / 𝑧][𝑦 / 𝑣][𝑣 / 𝑥]𝜑 ↔ [𝑦 / 𝑣][𝑤 / 𝑧][𝑣 / 𝑥]𝜑) | |
2 | sbcom2v 1861 | . . . 4 ⊢ ([𝑤 / 𝑧][𝑣 / 𝑥]𝜑 ↔ [𝑣 / 𝑥][𝑤 / 𝑧]𝜑) | |
3 | 2 | sbbii 1648 | . . 3 ⊢ ([𝑦 / 𝑣][𝑤 / 𝑧][𝑣 / 𝑥]𝜑 ↔ [𝑦 / 𝑣][𝑣 / 𝑥][𝑤 / 𝑧]𝜑) |
4 | 1, 3 | bitri 173 | . 2 ⊢ ([𝑤 / 𝑧][𝑦 / 𝑣][𝑣 / 𝑥]𝜑 ↔ [𝑦 / 𝑣][𝑣 / 𝑥][𝑤 / 𝑧]𝜑) |
5 | ax-17 1419 | . . . 4 ⊢ (𝜑 → ∀𝑣𝜑) | |
6 | 5 | sbco2v 1821 | . . 3 ⊢ ([𝑦 / 𝑣][𝑣 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
7 | 6 | sbbii 1648 | . 2 ⊢ ([𝑤 / 𝑧][𝑦 / 𝑣][𝑣 / 𝑥]𝜑 ↔ [𝑤 / 𝑧][𝑦 / 𝑥]𝜑) |
8 | ax-17 1419 | . . 3 ⊢ ([𝑤 / 𝑧]𝜑 → ∀𝑣[𝑤 / 𝑧]𝜑) | |
9 | 8 | sbco2v 1821 | . 2 ⊢ ([𝑦 / 𝑣][𝑣 / 𝑥][𝑤 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑) |
10 | 4, 7, 9 | 3bitr3i 199 | 1 ⊢ ([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 98 [wsb 1645 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 |
This theorem is referenced by: sbcom2 1863 |
Copyright terms: Public domain | W3C validator |