Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcexg GIF version

Theorem sbcexg 2813
 Description: Move existential quantifier in and out of class substitution. (Contributed by NM, 21-May-2004.)
Assertion
Ref Expression
sbcexg (𝐴𝑉 → ([𝐴 / 𝑦]𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem sbcexg
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 2767 . 2 (𝑧 = 𝐴 → ([𝑧 / 𝑦]∃𝑥𝜑[𝐴 / 𝑦]𝑥𝜑))
2 dfsbcq2 2767 . . 3 (𝑧 = 𝐴 → ([𝑧 / 𝑦]𝜑[𝐴 / 𝑦]𝜑))
32exbidv 1706 . 2 (𝑧 = 𝐴 → (∃𝑥[𝑧 / 𝑦]𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑))
4 sbex 1880 . 2 ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑)
51, 3, 4vtoclbg 2614 1 (𝐴𝑉 → ([𝐴 / 𝑦]𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑))
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 98   = wceq 1243  ∃wex 1381   ∈ wcel 1393  [wsb 1645  [wsbc 2764 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-sbc 2765 This theorem is referenced by:  sbcabel  2839  csbunig  3588  csbxpg  4421  csbrng  4782
 Copyright terms: Public domain W3C validator