Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbceq2g Structured version   GIF version

Theorem sbceq2g 2866
 Description: Move proper substitution to second argument of an equality. (Contributed by NM, 30-Nov-2005.)
Assertion
Ref Expression
sbceq2g (A 𝑉 → ([A / x]B = 𝐶B = A / x𝐶))
Distinct variable group:   x,B
Allowed substitution hints:   A(x)   𝐶(x)   𝑉(x)

Proof of Theorem sbceq2g
StepHypRef Expression
1 sbceqg 2860 . 2 (A 𝑉 → ([A / x]B = 𝐶A / xB = A / x𝐶))
2 csbconstg 2858 . . 3 (A 𝑉A / xB = B)
32eqeq1d 2045 . 2 (A 𝑉 → (A / xB = A / x𝐶B = A / x𝐶))
41, 3bitrd 177 1 (A 𝑉 → ([A / x]B = 𝐶B = A / x𝐶))
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 98   = wceq 1242   ∈ wcel 1390  [wsbc 2758  ⦋csb 2846 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019 This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-sbc 2759  df-csb 2847 This theorem is referenced by:  csbsng  3422
 Copyright terms: Public domain W3C validator