Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbcel2g | GIF version |
Description: Move proper substitution in and out of a membership relation. (Contributed by NM, 14-Nov-2005.) |
Ref | Expression |
---|---|
sbcel2g | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ 𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcel12g 2865 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶)) | |
2 | csbconstg 2864 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) | |
3 | 2 | eleq1d 2106 | . 2 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶 ↔ 𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶)) |
4 | 1, 3 | bitrd 177 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ 𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 98 ∈ wcel 1393 [wsbc 2764 ⦋csb 2852 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-sbc 2765 df-csb 2853 |
This theorem is referenced by: csbcomg 2873 sbccsbg 2878 sbnfc2 2906 csbabg 2907 sbcssg 3330 csbunig 3588 csbxpg 4421 csbdmg 4529 csbrng 4782 bj-sels 10034 |
Copyright terms: Public domain | W3C validator |