ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbal GIF version

Theorem sbal 1876
Description: Move universal quantifier in and out of substitution. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 12-Feb-2018.)
Assertion
Ref Expression
sbal ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)
Distinct variable groups:   𝑥,𝑦   𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem sbal
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 sbalyz 1875 . . . 4 ([𝑤 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑤 / 𝑦]𝜑)
21sbbii 1648 . . 3 ([𝑧 / 𝑤][𝑤 / 𝑦]∀𝑥𝜑 ↔ [𝑧 / 𝑤]∀𝑥[𝑤 / 𝑦]𝜑)
3 sbalyz 1875 . . 3 ([𝑧 / 𝑤]∀𝑥[𝑤 / 𝑦]𝜑 ↔ ∀𝑥[𝑧 / 𝑤][𝑤 / 𝑦]𝜑)
42, 3bitri 173 . 2 ([𝑧 / 𝑤][𝑤 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑤][𝑤 / 𝑦]𝜑)
5 ax-17 1419 . . 3 (∀𝑥𝜑 → ∀𝑤𝑥𝜑)
65sbco2v 1821 . 2 ([𝑧 / 𝑤][𝑤 / 𝑦]∀𝑥𝜑 ↔ [𝑧 / 𝑦]∀𝑥𝜑)
7 ax-17 1419 . . . 4 (𝜑 → ∀𝑤𝜑)
87sbco2v 1821 . . 3 ([𝑧 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑧 / 𝑦]𝜑)
98albii 1359 . 2 (∀𝑥[𝑧 / 𝑤][𝑤 / 𝑦]𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)
104, 6, 93bitr3i 199 1 ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)
Colors of variables: wff set class
Syntax hints:  wb 98  wal 1241  [wsb 1645
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646
This theorem is referenced by:  sbal1  1878  sbalv  1881  sbcal  2810  sbcalg  2811
  Copyright terms: Public domain W3C validator