ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb8iota GIF version

Theorem sb8iota 4874
Description: Variable substitution in description binder. Compare sb8eu 1913. (Contributed by NM, 18-Mar-2013.)
Hypothesis
Ref Expression
sb8iota.1 𝑦𝜑
Assertion
Ref Expression
sb8iota (℩𝑥𝜑) = (℩𝑦[𝑦 / 𝑥]𝜑)

Proof of Theorem sb8iota
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1421 . . . . . 6 𝑤(𝜑𝑥 = 𝑧)
21sb8 1736 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑧) ↔ ∀𝑤[𝑤 / 𝑥](𝜑𝑥 = 𝑧))
3 sbbi 1833 . . . . . . 7 ([𝑤 / 𝑥](𝜑𝑥 = 𝑧) ↔ ([𝑤 / 𝑥]𝜑 ↔ [𝑤 / 𝑥]𝑥 = 𝑧))
4 sb8iota.1 . . . . . . . . 9 𝑦𝜑
54nfsb 1822 . . . . . . . 8 𝑦[𝑤 / 𝑥]𝜑
6 equsb3 1825 . . . . . . . . 9 ([𝑤 / 𝑥]𝑥 = 𝑧𝑤 = 𝑧)
7 nfv 1421 . . . . . . . . 9 𝑦 𝑤 = 𝑧
86, 7nfxfr 1363 . . . . . . . 8 𝑦[𝑤 / 𝑥]𝑥 = 𝑧
95, 8nfbi 1481 . . . . . . 7 𝑦([𝑤 / 𝑥]𝜑 ↔ [𝑤 / 𝑥]𝑥 = 𝑧)
103, 9nfxfr 1363 . . . . . 6 𝑦[𝑤 / 𝑥](𝜑𝑥 = 𝑧)
11 nfv 1421 . . . . . 6 𝑤[𝑦 / 𝑥](𝜑𝑥 = 𝑧)
12 sbequ 1721 . . . . . 6 (𝑤 = 𝑦 → ([𝑤 / 𝑥](𝜑𝑥 = 𝑧) ↔ [𝑦 / 𝑥](𝜑𝑥 = 𝑧)))
1310, 11, 12cbval 1637 . . . . 5 (∀𝑤[𝑤 / 𝑥](𝜑𝑥 = 𝑧) ↔ ∀𝑦[𝑦 / 𝑥](𝜑𝑥 = 𝑧))
14 equsb3 1825 . . . . . . 7 ([𝑦 / 𝑥]𝑥 = 𝑧𝑦 = 𝑧)
1514sblbis 1834 . . . . . 6 ([𝑦 / 𝑥](𝜑𝑥 = 𝑧) ↔ ([𝑦 / 𝑥]𝜑𝑦 = 𝑧))
1615albii 1359 . . . . 5 (∀𝑦[𝑦 / 𝑥](𝜑𝑥 = 𝑧) ↔ ∀𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑧))
172, 13, 163bitri 195 . . . 4 (∀𝑥(𝜑𝑥 = 𝑧) ↔ ∀𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑧))
1817abbii 2153 . . 3 {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)} = {𝑧 ∣ ∀𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑧)}
1918unieqi 3590 . 2 {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)} = {𝑧 ∣ ∀𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑧)}
20 dfiota2 4868 . 2 (℩𝑥𝜑) = {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)}
21 dfiota2 4868 . 2 (℩𝑦[𝑦 / 𝑥]𝜑) = {𝑧 ∣ ∀𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑧)}
2219, 20, 213eqtr4i 2070 1 (℩𝑥𝜑) = (℩𝑦[𝑦 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wb 98  wal 1241   = wceq 1243  wnf 1349  [wsb 1645  {cab 2026   cuni 3580  cio 4865
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rex 2312  df-sn 3381  df-uni 3581  df-iota 4867
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator