![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sb8e | GIF version |
Description: Substitution of variable in existential quantifier. (Contributed by NM, 12-Aug-1993.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Jim Kingdon, 15-Jan-2018.) |
Ref | Expression |
---|---|
sb8e.1 | ⊢ Ⅎ𝑦𝜑 |
Ref | Expression |
---|---|
sb8e | ⊢ (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb8e.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | nfs1 1690 | . 2 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
3 | sbequ12 1654 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
4 | 1, 2, 3 | cbvex 1639 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 98 Ⅎwnf 1349 ∃wex 1381 [wsb 1645 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-11 1397 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 |
This theorem is referenced by: sb8mo 1914 mo2n 1928 mor 1942 nfrexdya 2359 |
Copyright terms: Public domain | W3C validator |