Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rspcva | GIF version |
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-2005.) |
Ref | Expression |
---|---|
rspcv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspcva | ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝜑) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcv.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | rspcv 2652 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
3 | 2 | imp 115 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝜑) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ↔ wb 98 = wceq 1243 ∈ wcel 1393 ∀wral 2306 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-v 2559 |
This theorem is referenced by: tfisi 4310 suppssov1 5709 caofinvl 5733 tfrlem1 5923 caucvgsrlemgt1 6879 peano2nnnn 6929 axcaucvglemcau 6972 squeeze0 7870 peano2nn 7926 nnsub 7952 zextle 8331 rexuz3 9588 cau3lem 9710 caubnd2 9713 climcn1 9829 serif0 9871 |
Copyright terms: Public domain | W3C validator |