Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspcva GIF version

Theorem rspcva 2654
 Description: Restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-2005.)
Hypothesis
Ref Expression
rspcv.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rspcva ((𝐴𝐵 ∧ ∀𝑥𝐵 𝜑) → 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rspcva
StepHypRef Expression
1 rspcv.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
21rspcv 2652 . 2 (𝐴𝐵 → (∀𝑥𝐵 𝜑𝜓))
32imp 115 1 ((𝐴𝐵 ∧ ∀𝑥𝐵 𝜑) → 𝜓)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ↔ wb 98   = wceq 1243   ∈ wcel 1393  ∀wral 2306 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559 This theorem is referenced by:  tfisi  4310  suppssov1  5709  caofinvl  5733  tfrlem1  5923  caucvgsrlemgt1  6879  peano2nnnn  6929  axcaucvglemcau  6972  squeeze0  7870  peano2nn  7926  nnsub  7952  zextle  8331  rexuz3  9588  cau3lem  9710  caubnd2  9713  climcn1  9829  serif0  9871
 Copyright terms: Public domain W3C validator