Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspc3v GIF version

Theorem rspc3v 2665
 Description: 3-variable restricted specialization, using implicit substitution. (Contributed by NM, 10-May-2005.)
Hypotheses
Ref Expression
rspc3v.1 (𝑥 = 𝐴 → (𝜑𝜒))
rspc3v.2 (𝑦 = 𝐵 → (𝜒𝜃))
rspc3v.3 (𝑧 = 𝐶 → (𝜃𝜓))
Assertion
Ref Expression
rspc3v ((𝐴𝑅𝐵𝑆𝐶𝑇) → (∀𝑥𝑅𝑦𝑆𝑧𝑇 𝜑𝜓))
Distinct variable groups:   𝜓,𝑧   𝜒,𝑥   𝜃,𝑦   𝑥,𝑦,𝑧,𝐴   𝑦,𝐵,𝑧   𝑧,𝐶   𝑥,𝑅   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦)   𝜒(𝑦,𝑧)   𝜃(𝑥,𝑧)   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝑅(𝑦,𝑧)   𝑆(𝑧)

Proof of Theorem rspc3v
StepHypRef Expression
1 rspc3v.1 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜒))
21ralbidv 2326 . . . 4 (𝑥 = 𝐴 → (∀𝑧𝑇 𝜑 ↔ ∀𝑧𝑇 𝜒))
3 rspc3v.2 . . . . 5 (𝑦 = 𝐵 → (𝜒𝜃))
43ralbidv 2326 . . . 4 (𝑦 = 𝐵 → (∀𝑧𝑇 𝜒 ↔ ∀𝑧𝑇 𝜃))
52, 4rspc2v 2662 . . 3 ((𝐴𝑅𝐵𝑆) → (∀𝑥𝑅𝑦𝑆𝑧𝑇 𝜑 → ∀𝑧𝑇 𝜃))
6 rspc3v.3 . . . 4 (𝑧 = 𝐶 → (𝜃𝜓))
76rspcv 2652 . . 3 (𝐶𝑇 → (∀𝑧𝑇 𝜃𝜓))
85, 7sylan9 389 . 2 (((𝐴𝑅𝐵𝑆) ∧ 𝐶𝑇) → (∀𝑥𝑅𝑦𝑆𝑧𝑇 𝜑𝜓))
983impa 1099 1 ((𝐴𝑅𝐵𝑆𝐶𝑇) → (∀𝑥𝑅𝑦𝑆𝑧𝑇 𝜑𝜓))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ↔ wb 98   ∧ w3a 885   = wceq 1243   ∈ wcel 1393  ∀wral 2306 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559 This theorem is referenced by:  swopolem  4042  isopolem  5461  isosolem  5463  caovassg  5659  caovcang  5662  caovordig  5666  caovordg  5668  caovdig  5675  caovdirg  5678  caoftrn  5736
 Copyright terms: Public domain W3C validator