Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpregt0 GIF version

Theorem rpregt0 8596
 Description: A positive real is a positive real number. (Contributed by NM, 11-Nov-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
rpregt0 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴))

Proof of Theorem rpregt0
StepHypRef Expression
1 elrp 8585 . 2 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
21biimpi 113 1 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ∈ wcel 1393   class class class wbr 3764  ℝcr 6888  0cc0 6889   < clt 7060  ℝ+crp 8583 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rab 2315  df-v 2559  df-un 2922  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-rp 8584 This theorem is referenced by:  rpne0  8598  divlt1lt  8650  divle1le  8651  ledivge1le  8652  expnlbnd  9373
 Copyright terms: Public domain W3C validator