ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmo5 Structured version   GIF version

Theorem rmo5 2519
Description: Restricted "at most one" in term of uniqueness. (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
rmo5 (∃*x A φ ↔ (x A φ∃!x A φ))

Proof of Theorem rmo5
StepHypRef Expression
1 df-mo 1901 . 2 (∃*x(x A φ) ↔ (x(x A φ) → ∃!x(x A φ)))
2 df-rmo 2308 . 2 (∃*x A φ∃*x(x A φ))
3 df-rex 2306 . . 3 (x A φx(x A φ))
4 df-reu 2307 . . 3 (∃!x A φ∃!x(x A φ))
53, 4imbi12i 228 . 2 ((x A φ∃!x A φ) ↔ (x(x A φ) → ∃!x(x A φ)))
61, 2, 53bitr4i 201 1 (∃*x A φ ↔ (x A φ∃!x A φ))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97  wb 98  wex 1378   wcel 1390  ∃!weu 1897  ∃*wmo 1898  wrex 2301  ∃!wreu 2302  ∃*wrmo 2303
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110  df-mo 1901  df-rex 2306  df-reu 2307  df-rmo 2308
This theorem is referenced by:  nrexrmo  2520  cbvrmo  2526  bdrmo  9245
  Copyright terms: Public domain W3C validator