ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotacl Structured version   GIF version

Theorem riotacl 5425
Description: Closure of restricted iota. (Contributed by NM, 21-Aug-2011.)
Assertion
Ref Expression
riotacl (∃!x A φ → (x A φ) A)
Distinct variable group:   x,A
Allowed substitution hint:   φ(x)

Proof of Theorem riotacl
StepHypRef Expression
1 ssrab2 3019 . 2 {x Aφ} ⊆ A
2 riotacl2 5424 . 2 (∃!x A φ → (x A φ) {x Aφ})
31, 2sseldi 2937 1 (∃!x A φ → (x A φ) A)
Colors of variables: wff set class
Syntax hints:  wi 4   wcel 1390  ∃!wreu 2302  {crab 2304  crio 5410
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-rex 2306  df-reu 2307  df-rab 2309  df-v 2553  df-sbc 2759  df-un 2916  df-in 2918  df-ss 2925  df-sn 3373  df-pr 3374  df-uni 3572  df-iota 4810  df-riota 5411
This theorem is referenced by:  riotaprop  5434  riotass2  5437  riotass  5438  acexmidlemcase  5450  subval  6980  subcl  6987  divvalap  7415  divclap  7419  divfnzn  8312  cjval  9053  cjth  9054  cjf  9055
  Copyright terms: Public domain W3C validator