ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riinerm GIF version

Theorem riinerm 6179
Description: The relative intersection of a family of equivalence relations is an equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.)
Assertion
Ref Expression
riinerm ((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 𝑅 Er 𝐵) → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑦,𝐴
Allowed substitution hints:   𝐵(𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem riinerm
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 iinerm 6178 . 2 ((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 𝑅 Er 𝐵) → 𝑥𝐴 𝑅 Er 𝐵)
2 eleq1 2100 . . . . . 6 (𝑥 = 𝑎 → (𝑥𝐴𝑎𝐴))
32cbvexv 1795 . . . . 5 (∃𝑥 𝑥𝐴 ↔ ∃𝑎 𝑎𝐴)
4 eleq1 2100 . . . . . 6 (𝑎 = 𝑦 → (𝑎𝐴𝑦𝐴))
54cbvexv 1795 . . . . 5 (∃𝑎 𝑎𝐴 ↔ ∃𝑦 𝑦𝐴)
63, 5bitri 173 . . . 4 (∃𝑥 𝑥𝐴 ↔ ∃𝑦 𝑦𝐴)
7 erssxp 6129 . . . . . . 7 (𝑅 Er 𝐵𝑅 ⊆ (𝐵 × 𝐵))
87ralimi 2384 . . . . . 6 (∀𝑥𝐴 𝑅 Er 𝐵 → ∀𝑥𝐴 𝑅 ⊆ (𝐵 × 𝐵))
9 riinm 3729 . . . . . 6 ((∀𝑥𝐴 𝑅 ⊆ (𝐵 × 𝐵) ∧ ∃𝑥 𝑥𝐴) → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) = 𝑥𝐴 𝑅)
108, 9sylan 267 . . . . 5 ((∀𝑥𝐴 𝑅 Er 𝐵 ∧ ∃𝑥 𝑥𝐴) → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) = 𝑥𝐴 𝑅)
11 ereq1 6113 . . . . 5 (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) = 𝑥𝐴 𝑅 → (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵 𝑥𝐴 𝑅 Er 𝐵))
1210, 11syl 14 . . . 4 ((∀𝑥𝐴 𝑅 Er 𝐵 ∧ ∃𝑥 𝑥𝐴) → (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵 𝑥𝐴 𝑅 Er 𝐵))
136, 12sylan2br 272 . . 3 ((∀𝑥𝐴 𝑅 Er 𝐵 ∧ ∃𝑦 𝑦𝐴) → (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵 𝑥𝐴 𝑅 Er 𝐵))
1413ancoms 255 . 2 ((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 𝑅 Er 𝐵) → (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵 𝑥𝐴 𝑅 Er 𝐵))
151, 14mpbird 156 1 ((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 𝑅 Er 𝐵) → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98   = wceq 1243  wex 1381  wcel 1393  wral 2306  cin 2916  wss 2917   ciin 3658   × cxp 4343   Er wer 6103
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-iin 3660  df-br 3765  df-opab 3819  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-er 6106
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator