ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexrab2 Structured version   GIF version

Theorem rexrab2 2702
Description: Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ralab2.1 (x = y → (ψχ))
Assertion
Ref Expression
rexrab2 (x {y Aφ}ψy A (φ χ))
Distinct variable groups:   x,y   x,A   χ,x   φ,x   ψ,y
Allowed substitution hints:   φ(y)   ψ(x)   χ(y)   A(y)

Proof of Theorem rexrab2
StepHypRef Expression
1 df-rab 2309 . . 3 {y Aφ} = {y ∣ (y A φ)}
21rexeqi 2504 . 2 (x {y Aφ}ψx {y ∣ (y A φ)}ψ)
3 ralab2.1 . . 3 (x = y → (ψχ))
43rexab2 2701 . 2 (x {y ∣ (y A φ)}ψy((y A φ) χ))
5 anass 381 . . . 4 (((y A φ) χ) ↔ (y A (φ χ)))
65exbii 1493 . . 3 (y((y A φ) χ) ↔ y(y A (φ χ)))
7 df-rex 2306 . . 3 (y A (φ χ) ↔ y(y A (φ χ)))
86, 7bitr4i 176 . 2 (y((y A φ) χ) ↔ y A (φ χ))
92, 4, 83bitri 195 1 (x {y Aφ}ψy A (φ χ))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97  wb 98  wex 1378   wcel 1390  {cab 2023  wrex 2301  {crab 2304
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-rex 2306  df-rab 2309
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator