![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexeqbidva | GIF version |
Description: Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017.) |
Ref | Expression |
---|---|
raleqbidva.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
raleqbidva.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rexeqbidva | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqbidva.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
2 | 1 | rexbidva 2323 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
3 | raleqbidva.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
4 | 3 | rexeqdv 2512 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜒 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
5 | 2, 4 | bitrd 177 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ↔ wb 98 = wceq 1243 ∈ wcel 1393 ∃wrex 2307 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-cleq 2033 df-clel 2036 df-nfc 2167 df-rex 2312 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |