![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reuss | GIF version |
Description: Transfer uniqueness to a smaller subclass. (Contributed by NM, 21-Aug-1999.) |
Ref | Expression |
---|---|
reuss | ⊢ ((A ⊆ B ∧ ∃x ∈ A φ ∧ ∃!x ∈ B φ) → ∃!x ∈ A φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 21 | . . . 4 ⊢ (x ∈ A → (φ → φ)) | |
2 | 1 | rgen 2368 | . . 3 ⊢ ∀x ∈ A (φ → φ) |
3 | reuss2 3211 | . . 3 ⊢ (((A ⊆ B ∧ ∀x ∈ A (φ → φ)) ∧ (∃x ∈ A φ ∧ ∃!x ∈ B φ)) → ∃!x ∈ A φ) | |
4 | 2, 3 | mpanl2 411 | . 2 ⊢ ((A ⊆ B ∧ (∃x ∈ A φ ∧ ∃!x ∈ B φ)) → ∃!x ∈ A φ) |
5 | 4 | 3impb 1099 | 1 ⊢ ((A ⊆ B ∧ ∃x ∈ A φ ∧ ∃!x ∈ B φ) → ∃!x ∈ A φ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ∧ w3a 884 ∈ wcel 1390 ∀wral 2300 ∃wrex 2301 ∃!wreu 2302 ⊆ wss 2911 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 629 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-10 1393 ax-11 1394 ax-i12 1395 ax-bndl 1396 ax-4 1397 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 |
This theorem depends on definitions: df-bi 110 df-3an 886 df-nf 1347 df-sb 1643 df-eu 1900 df-mo 1901 df-clab 2024 df-cleq 2030 df-clel 2033 df-ral 2305 df-rex 2306 df-reu 2307 df-in 2918 df-ss 2925 |
This theorem is referenced by: riotass 5438 |
Copyright terms: Public domain | W3C validator |