ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reusn GIF version

Theorem reusn 3441
Description: A way to express restricted existential uniqueness of a wff: its restricted class abstraction is a singleton. (Contributed by NM, 30-May-2006.) (Proof shortened by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
reusn (∃!𝑥𝐴 𝜑 ↔ ∃𝑦{𝑥𝐴𝜑} = {𝑦})
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem reusn
StepHypRef Expression
1 euabsn2 3439 . 2 (∃!𝑥(𝑥𝐴𝜑) ↔ ∃𝑦{𝑥 ∣ (𝑥𝐴𝜑)} = {𝑦})
2 df-reu 2313 . 2 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
3 df-rab 2315 . . . 4 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
43eqeq1i 2047 . . 3 ({𝑥𝐴𝜑} = {𝑦} ↔ {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑦})
54exbii 1496 . 2 (∃𝑦{𝑥𝐴𝜑} = {𝑦} ↔ ∃𝑦{𝑥 ∣ (𝑥𝐴𝜑)} = {𝑦})
61, 2, 53bitr4i 201 1 (∃!𝑥𝐴 𝜑 ↔ ∃𝑦{𝑥𝐴𝜑} = {𝑦})
Colors of variables: wff set class
Syntax hints:  wa 97  wb 98   = wceq 1243  wex 1381  wcel 1393  ∃!weu 1900  {cab 2026  ∃!wreu 2308  {crab 2310  {csn 3375
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-reu 2313  df-rab 2315  df-v 2559  df-sn 3381
This theorem is referenced by:  reuen1  6281
  Copyright terms: Public domain W3C validator