ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reuhypd GIF version

Theorem reuhypd 4203
Description: A theorem useful for eliminating restricted existential uniqueness hypotheses. (Contributed by NM, 16-Jan-2012.)
Hypotheses
Ref Expression
reuhypd.1 ((𝜑𝑥𝐶) → 𝐵𝐶)
reuhypd.2 ((𝜑𝑥𝐶𝑦𝐶) → (𝑥 = 𝐴𝑦 = 𝐵))
Assertion
Ref Expression
reuhypd ((𝜑𝑥𝐶) → ∃!𝑦𝐶 𝑥 = 𝐴)
Distinct variable groups:   𝜑,𝑦   𝑦,𝐵   𝑦,𝐶   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑦)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem reuhypd
StepHypRef Expression
1 reuhypd.1 . . . . 5 ((𝜑𝑥𝐶) → 𝐵𝐶)
2 elex 2566 . . . . 5 (𝐵𝐶𝐵 ∈ V)
31, 2syl 14 . . . 4 ((𝜑𝑥𝐶) → 𝐵 ∈ V)
4 eueq 2712 . . . 4 (𝐵 ∈ V ↔ ∃!𝑦 𝑦 = 𝐵)
53, 4sylib 127 . . 3 ((𝜑𝑥𝐶) → ∃!𝑦 𝑦 = 𝐵)
6 eleq1 2100 . . . . . . 7 (𝑦 = 𝐵 → (𝑦𝐶𝐵𝐶))
71, 6syl5ibrcom 146 . . . . . 6 ((𝜑𝑥𝐶) → (𝑦 = 𝐵𝑦𝐶))
87pm4.71rd 374 . . . . 5 ((𝜑𝑥𝐶) → (𝑦 = 𝐵 ↔ (𝑦𝐶𝑦 = 𝐵)))
9 reuhypd.2 . . . . . . 7 ((𝜑𝑥𝐶𝑦𝐶) → (𝑥 = 𝐴𝑦 = 𝐵))
1093expa 1104 . . . . . 6 (((𝜑𝑥𝐶) ∧ 𝑦𝐶) → (𝑥 = 𝐴𝑦 = 𝐵))
1110pm5.32da 425 . . . . 5 ((𝜑𝑥𝐶) → ((𝑦𝐶𝑥 = 𝐴) ↔ (𝑦𝐶𝑦 = 𝐵)))
128, 11bitr4d 180 . . . 4 ((𝜑𝑥𝐶) → (𝑦 = 𝐵 ↔ (𝑦𝐶𝑥 = 𝐴)))
1312eubidv 1908 . . 3 ((𝜑𝑥𝐶) → (∃!𝑦 𝑦 = 𝐵 ↔ ∃!𝑦(𝑦𝐶𝑥 = 𝐴)))
145, 13mpbid 135 . 2 ((𝜑𝑥𝐶) → ∃!𝑦(𝑦𝐶𝑥 = 𝐴))
15 df-reu 2313 . 2 (∃!𝑦𝐶 𝑥 = 𝐴 ↔ ∃!𝑦(𝑦𝐶𝑥 = 𝐴))
1614, 15sylibr 137 1 ((𝜑𝑥𝐶) → ∃!𝑦𝐶 𝑥 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  w3a 885   = wceq 1243  wcel 1393  ∃!weu 1900  ∃!wreu 2308  Vcvv 2557
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-3an 887  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-reu 2313  df-v 2559
This theorem is referenced by:  reuhyp  4204
  Copyright terms: Public domain W3C validator