ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resfunexg GIF version

Theorem resfunexg 5382
Description: The restriction of a function to a set exists. Compare Proposition 6.17 of [TakeutiZaring] p. 28. (Contributed by NM, 7-Apr-1995.) (Revised by Mario Carneiro, 22-Jun-2013.)
Assertion
Ref Expression
resfunexg ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)

Proof of Theorem resfunexg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funres 4941 . . . . 5 (Fun 𝐴 → Fun (𝐴𝐵))
2 funfvex 5192 . . . . . 6 ((Fun (𝐴𝐵) ∧ 𝑥 ∈ dom (𝐴𝐵)) → ((𝐴𝐵)‘𝑥) ∈ V)
32ralrimiva 2392 . . . . 5 (Fun (𝐴𝐵) → ∀𝑥 ∈ dom (𝐴𝐵)((𝐴𝐵)‘𝑥) ∈ V)
4 fnasrng 5343 . . . . 5 (∀𝑥 ∈ dom (𝐴𝐵)((𝐴𝐵)‘𝑥) ∈ V → (𝑥 ∈ dom (𝐴𝐵) ↦ ((𝐴𝐵)‘𝑥)) = ran (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩))
51, 3, 43syl 17 . . . 4 (Fun 𝐴 → (𝑥 ∈ dom (𝐴𝐵) ↦ ((𝐴𝐵)‘𝑥)) = ran (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩))
65adantr 261 . . 3 ((Fun 𝐴𝐵𝐶) → (𝑥 ∈ dom (𝐴𝐵) ↦ ((𝐴𝐵)‘𝑥)) = ran (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩))
71adantr 261 . . . . 5 ((Fun 𝐴𝐵𝐶) → Fun (𝐴𝐵))
8 funfn 4931 . . . . 5 (Fun (𝐴𝐵) ↔ (𝐴𝐵) Fn dom (𝐴𝐵))
97, 8sylib 127 . . . 4 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) Fn dom (𝐴𝐵))
10 dffn5im 5219 . . . 4 ((𝐴𝐵) Fn dom (𝐴𝐵) → (𝐴𝐵) = (𝑥 ∈ dom (𝐴𝐵) ↦ ((𝐴𝐵)‘𝑥)))
119, 10syl 14 . . 3 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) = (𝑥 ∈ dom (𝐴𝐵) ↦ ((𝐴𝐵)‘𝑥)))
12 imadmrn 4678 . . . . 5 ((𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) “ dom (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩)) = ran (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩)
13 vex 2560 . . . . . . . . 9 𝑥 ∈ V
14 opexgOLD 3965 . . . . . . . . 9 ((𝑥 ∈ V ∧ ((𝐴𝐵)‘𝑥) ∈ V) → ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩ ∈ V)
1513, 2, 14sylancr 393 . . . . . . . 8 ((Fun (𝐴𝐵) ∧ 𝑥 ∈ dom (𝐴𝐵)) → ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩ ∈ V)
1615ralrimiva 2392 . . . . . . 7 (Fun (𝐴𝐵) → ∀𝑥 ∈ dom (𝐴𝐵)⟨𝑥, ((𝐴𝐵)‘𝑥)⟩ ∈ V)
17 dmmptg 4818 . . . . . . 7 (∀𝑥 ∈ dom (𝐴𝐵)⟨𝑥, ((𝐴𝐵)‘𝑥)⟩ ∈ V → dom (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) = dom (𝐴𝐵))
181, 16, 173syl 17 . . . . . 6 (Fun 𝐴 → dom (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) = dom (𝐴𝐵))
1918imaeq2d 4668 . . . . 5 (Fun 𝐴 → ((𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) “ dom (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩)) = ((𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) “ dom (𝐴𝐵)))
2012, 19syl5reqr 2087 . . . 4 (Fun 𝐴 → ((𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) “ dom (𝐴𝐵)) = ran (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩))
2120adantr 261 . . 3 ((Fun 𝐴𝐵𝐶) → ((𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) “ dom (𝐴𝐵)) = ran (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩))
226, 11, 213eqtr4d 2082 . 2 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) = ((𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) “ dom (𝐴𝐵)))
23 funmpt 4938 . . 3 Fun (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩)
24 dmresexg 4634 . . . 4 (𝐵𝐶 → dom (𝐴𝐵) ∈ V)
2524adantl 262 . . 3 ((Fun 𝐴𝐵𝐶) → dom (𝐴𝐵) ∈ V)
26 funimaexg 4983 . . 3 ((Fun (𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) ∧ dom (𝐴𝐵) ∈ V) → ((𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) “ dom (𝐴𝐵)) ∈ V)
2723, 25, 26sylancr 393 . 2 ((Fun 𝐴𝐵𝐶) → ((𝑥 ∈ dom (𝐴𝐵) ↦ ⟨𝑥, ((𝐴𝐵)‘𝑥)⟩) “ dom (𝐴𝐵)) ∈ V)
2822, 27eqeltrd 2114 1 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97   = wceq 1243  wcel 1393  wral 2306  Vcvv 2557  cop 3378  cmpt 3818  dom cdm 4345  ran crn 4346  cres 4347  cima 4348  Fun wfun 4896   Fn wfn 4897  cfv 4902
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910
This theorem is referenced by:  fnex  5383  ofexg  5716  cofunexg  5738  rdgivallem  5968  frecex  5981  frecsuclem3  5990
  Copyright terms: Public domain W3C validator