![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reldif | GIF version |
Description: A difference cutting down a relation is a relation. (Contributed by NM, 31-Mar-1998.) |
Ref | Expression |
---|---|
reldif | ⊢ (Rel 𝐴 → Rel (𝐴 ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 3070 | . 2 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
2 | relss 4427 | . 2 ⊢ ((𝐴 ∖ 𝐵) ⊆ 𝐴 → (Rel 𝐴 → Rel (𝐴 ∖ 𝐵))) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ (Rel 𝐴 → Rel (𝐴 ∖ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∖ cdif 2914 ⊆ wss 2917 Rel wrel 4350 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-dif 2920 df-in 2924 df-ss 2931 df-rel 4352 |
This theorem is referenced by: difopab 4469 |
Copyright terms: Public domain | W3C validator |