ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relcoi2 Structured version   GIF version

Theorem relcoi2 4771
Description: Composition with the identity relation restricted to a relation's field. (Contributed by FL, 2-May-2011.)
Assertion
Ref Expression
relcoi2 (Rel 𝑅 → (( I ↾ 𝑅) ∘ 𝑅) = 𝑅)

Proof of Theorem relcoi2
StepHypRef Expression
1 dmrnssfld 4518 . . . 4 (dom 𝑅 ∪ ran 𝑅) ⊆ 𝑅
2 unss 3090 . . . . 5 ((dom 𝑅 𝑅 ran 𝑅 𝑅) ↔ (dom 𝑅 ∪ ran 𝑅) ⊆ 𝑅)
3 simpr 103 . . . . 5 ((dom 𝑅 𝑅 ran 𝑅 𝑅) → ran 𝑅 𝑅)
42, 3sylbir 125 . . . 4 ((dom 𝑅 ∪ ran 𝑅) ⊆ 𝑅 → ran 𝑅 𝑅)
51, 4ax-mp 7 . . 3 ran 𝑅 𝑅
6 cores 4747 . . 3 (ran 𝑅 𝑅 → (( I ↾ 𝑅) ∘ 𝑅) = ( I ∘ 𝑅))
75, 6mp1i 10 . 2 (Rel 𝑅 → (( I ↾ 𝑅) ∘ 𝑅) = ( I ∘ 𝑅))
8 coi2 4760 . 2 (Rel 𝑅 → ( I ∘ 𝑅) = 𝑅)
97, 8eqtrd 2050 1 (Rel 𝑅 → (( I ↾ 𝑅) ∘ 𝑅) = 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97   = wceq 1226  cun 2888  wss 2890   cuni 3550   I cid 3995  dom cdm 4268  ran crn 4269  cres 4270  ccom 4272  Rel wrel 4273
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617  ax-5 1312  ax-7 1313  ax-gen 1314  ax-ie1 1359  ax-ie2 1360  ax-8 1372  ax-10 1373  ax-11 1374  ax-i12 1375  ax-bnd 1376  ax-4 1377  ax-14 1382  ax-17 1396  ax-i9 1400  ax-ial 1405  ax-i5r 1406  ax-ext 2000  ax-sep 3845  ax-pow 3897  ax-pr 3914
This theorem depends on definitions:  df-bi 110  df-3an 873  df-tru 1229  df-nf 1326  df-sb 1624  df-eu 1881  df-mo 1882  df-clab 2005  df-cleq 2011  df-clel 2014  df-nfc 2145  df-ral 2285  df-rex 2286  df-v 2533  df-un 2895  df-in 2897  df-ss 2904  df-pw 3332  df-sn 3352  df-pr 3353  df-op 3355  df-uni 3551  df-br 3735  df-opab 3789  df-id 4000  df-xp 4274  df-rel 4275  df-cnv 4276  df-co 4277  df-dm 4278  df-rn 4279  df-res 4280
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator