ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rel0 Structured version   GIF version

Theorem rel0 4405
Description: The empty set is a relation. (Contributed by NM, 26-Apr-1998.)
Assertion
Ref Expression
rel0 Rel ∅

Proof of Theorem rel0
StepHypRef Expression
1 0ss 3249 . 2 ∅ ⊆ (V × V)
2 df-rel 4295 . 2 (Rel ∅ ↔ ∅ ⊆ (V × V))
31, 2mpbir 134 1 Rel ∅
Colors of variables: wff set class
Syntax hints:  Vcvv 2551  wss 2911  c0 3218   × cxp 4286  Rel wrel 4293
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-dif 2914  df-in 2918  df-ss 2925  df-nul 3219  df-rel 4295
This theorem is referenced by:  reldm0  4496  cnv0  4670  cnveq0  4720  co02  4777  co01  4778  tpos0  5830  0er  6076
  Copyright terms: Public domain W3C validator