ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reg3exmidlemwe GIF version

Theorem reg3exmidlemwe 4303
Description: Lemma for reg3exmid 4304. Our counterexample 𝐴 satisfies We. (Contributed by Jim Kingdon, 3-Oct-2021.)
Hypothesis
Ref Expression
reg3exmidlemwe.a 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))}
Assertion
Ref Expression
reg3exmidlemwe E We 𝐴
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem reg3exmidlemwe
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zfregfr 4298 . 2 E Fr 𝐴
2 epel 4029 . . . . . 6 (𝑎 E 𝑏𝑎𝑏)
3 epel 4029 . . . . . 6 (𝑏 E 𝑐𝑏𝑐)
42, 3anbi12i 433 . . . . 5 ((𝑎 E 𝑏𝑏 E 𝑐) ↔ (𝑎𝑏𝑏𝑐))
5 simpr 103 . . . . . 6 (((𝑎𝐴𝑏𝐴𝑐𝐴) ∧ (𝑎𝑏𝑏𝑐)) → (𝑎𝑏𝑏𝑐))
6 elirr 4266 . . . . . . . 8 ¬ {∅} ∈ {∅}
7 simprr 484 . . . . . . . . . 10 (((𝑎𝐴𝑏𝐴𝑐𝐴) ∧ (𝑎𝑏𝑏𝑐)) → 𝑏𝑐)
8 noel 3228 . . . . . . . . . . . . 13 ¬ 𝑎 ∈ ∅
9 eleq2 2101 . . . . . . . . . . . . 13 (𝑏 = ∅ → (𝑎𝑏𝑎 ∈ ∅))
108, 9mtbiri 600 . . . . . . . . . . . 12 (𝑏 = ∅ → ¬ 𝑎𝑏)
11 simprl 483 . . . . . . . . . . . 12 (((𝑎𝐴𝑏𝐴𝑐𝐴) ∧ (𝑎𝑏𝑏𝑐)) → 𝑎𝑏)
1210, 11nsyl3 556 . . . . . . . . . . 11 (((𝑎𝐴𝑏𝐴𝑐𝐴) ∧ (𝑎𝑏𝑏𝑐)) → ¬ 𝑏 = ∅)
13 elrabi 2695 . . . . . . . . . . . . . . . 16 (𝑏 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))} → 𝑏 ∈ {∅, {∅}})
14 reg3exmidlemwe.a . . . . . . . . . . . . . . . 16 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))}
1513, 14eleq2s 2132 . . . . . . . . . . . . . . 15 (𝑏𝐴𝑏 ∈ {∅, {∅}})
16 elpri 3398 . . . . . . . . . . . . . . 15 (𝑏 ∈ {∅, {∅}} → (𝑏 = ∅ ∨ 𝑏 = {∅}))
1715, 16syl 14 . . . . . . . . . . . . . 14 (𝑏𝐴 → (𝑏 = ∅ ∨ 𝑏 = {∅}))
1817orcomd 648 . . . . . . . . . . . . 13 (𝑏𝐴 → (𝑏 = {∅} ∨ 𝑏 = ∅))
19183ad2ant2 926 . . . . . . . . . . . 12 ((𝑎𝐴𝑏𝐴𝑐𝐴) → (𝑏 = {∅} ∨ 𝑏 = ∅))
2019adantr 261 . . . . . . . . . . 11 (((𝑎𝐴𝑏𝐴𝑐𝐴) ∧ (𝑎𝑏𝑏𝑐)) → (𝑏 = {∅} ∨ 𝑏 = ∅))
2112, 20ecased 1239 . . . . . . . . . 10 (((𝑎𝐴𝑏𝐴𝑐𝐴) ∧ (𝑎𝑏𝑏𝑐)) → 𝑏 = {∅})
22 noel 3228 . . . . . . . . . . . . 13 ¬ 𝑏 ∈ ∅
23 eleq2 2101 . . . . . . . . . . . . 13 (𝑐 = ∅ → (𝑏𝑐𝑏 ∈ ∅))
2422, 23mtbiri 600 . . . . . . . . . . . 12 (𝑐 = ∅ → ¬ 𝑏𝑐)
2524, 7nsyl3 556 . . . . . . . . . . 11 (((𝑎𝐴𝑏𝐴𝑐𝐴) ∧ (𝑎𝑏𝑏𝑐)) → ¬ 𝑐 = ∅)
26 elrabi 2695 . . . . . . . . . . . . . . . 16 (𝑐 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))} → 𝑐 ∈ {∅, {∅}})
2726, 14eleq2s 2132 . . . . . . . . . . . . . . 15 (𝑐𝐴𝑐 ∈ {∅, {∅}})
28 vex 2560 . . . . . . . . . . . . . . . 16 𝑐 ∈ V
2928elpr 3396 . . . . . . . . . . . . . . 15 (𝑐 ∈ {∅, {∅}} ↔ (𝑐 = ∅ ∨ 𝑐 = {∅}))
3027, 29sylib 127 . . . . . . . . . . . . . 14 (𝑐𝐴 → (𝑐 = ∅ ∨ 𝑐 = {∅}))
3130orcomd 648 . . . . . . . . . . . . 13 (𝑐𝐴 → (𝑐 = {∅} ∨ 𝑐 = ∅))
32313ad2ant3 927 . . . . . . . . . . . 12 ((𝑎𝐴𝑏𝐴𝑐𝐴) → (𝑐 = {∅} ∨ 𝑐 = ∅))
3332adantr 261 . . . . . . . . . . 11 (((𝑎𝐴𝑏𝐴𝑐𝐴) ∧ (𝑎𝑏𝑏𝑐)) → (𝑐 = {∅} ∨ 𝑐 = ∅))
3425, 33ecased 1239 . . . . . . . . . 10 (((𝑎𝐴𝑏𝐴𝑐𝐴) ∧ (𝑎𝑏𝑏𝑐)) → 𝑐 = {∅})
357, 21, 343eltr3d 2120 . . . . . . . . 9 (((𝑎𝐴𝑏𝐴𝑐𝐴) ∧ (𝑎𝑏𝑏𝑐)) → {∅} ∈ {∅})
3635ex 108 . . . . . . . 8 ((𝑎𝐴𝑏𝐴𝑐𝐴) → ((𝑎𝑏𝑏𝑐) → {∅} ∈ {∅}))
376, 36mtoi 590 . . . . . . 7 ((𝑎𝐴𝑏𝐴𝑐𝐴) → ¬ (𝑎𝑏𝑏𝑐))
3837adantr 261 . . . . . 6 (((𝑎𝐴𝑏𝐴𝑐𝐴) ∧ (𝑎𝑏𝑏𝑐)) → ¬ (𝑎𝑏𝑏𝑐))
395, 38pm2.21dd 550 . . . . 5 (((𝑎𝐴𝑏𝐴𝑐𝐴) ∧ (𝑎𝑏𝑏𝑐)) → 𝑎 E 𝑐)
404, 39sylan2b 271 . . . 4 (((𝑎𝐴𝑏𝐴𝑐𝐴) ∧ (𝑎 E 𝑏𝑏 E 𝑐)) → 𝑎 E 𝑐)
4140ex 108 . . 3 ((𝑎𝐴𝑏𝐴𝑐𝐴) → ((𝑎 E 𝑏𝑏 E 𝑐) → 𝑎 E 𝑐))
4241rgen3 2406 . 2 𝑎𝐴𝑏𝐴𝑐𝐴 ((𝑎 E 𝑏𝑏 E 𝑐) → 𝑎 E 𝑐)
43 df-wetr 4071 . 2 ( E We 𝐴 ↔ ( E Fr 𝐴 ∧ ∀𝑎𝐴𝑏𝐴𝑐𝐴 ((𝑎 E 𝑏𝑏 E 𝑐) → 𝑎 E 𝑐)))
441, 42, 43mpbir2an 849 1 E We 𝐴
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 97  wo 629  w3a 885   = wceq 1243  wcel 1393  wral 2306  {crab 2310  c0 3224  {csn 3375  {cpr 3376   class class class wbr 3764   E cep 4024   Fr wfr 4065   We wwe 4067
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-setind 4262
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rab 2315  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-eprel 4026  df-frfor 4068  df-frind 4069  df-wetr 4071
This theorem is referenced by:  reg3exmid  4304
  Copyright terms: Public domain W3C validator