ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgtfr GIF version

Theorem rdgtfr 5961
Description: The recursion rule for the recursive definition generator is defined everywhere. (Contributed by Jim Kingdon, 14-May-2020.)
Assertion
Ref Expression
rdgtfr ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → (Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) ∧ ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V))
Distinct variable groups:   𝐴,𝑔   𝑥,𝑔,𝑧,𝐹
Allowed substitution hints:   𝐴(𝑥,𝑧,𝑓)   𝐹(𝑓)   𝑉(𝑥,𝑧,𝑓,𝑔)

Proof of Theorem rdgtfr
StepHypRef Expression
1 elex 2566 . 2 (𝐴𝑉𝐴 ∈ V)
2 funmpt 4938 . . . 4 Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))
3 vex 2560 . . . . 5 𝑓 ∈ V
4 vex 2560 . . . . . . . . . . 11 𝑔 ∈ V
54dmex 4598 . . . . . . . . . 10 dom 𝑔 ∈ V
6 vex 2560 . . . . . . . . . . . . 13 𝑥 ∈ V
74, 6fvex 5195 . . . . . . . . . . . 12 (𝑔𝑥) ∈ V
8 fveq2 5178 . . . . . . . . . . . . 13 (𝑧 = (𝑔𝑥) → (𝐹𝑧) = (𝐹‘(𝑔𝑥)))
98eleq1d 2106 . . . . . . . . . . . 12 (𝑧 = (𝑔𝑥) → ((𝐹𝑧) ∈ V ↔ (𝐹‘(𝑔𝑥)) ∈ V))
107, 9spcv 2646 . . . . . . . . . . 11 (∀𝑧(𝐹𝑧) ∈ V → (𝐹‘(𝑔𝑥)) ∈ V)
1110ralrimivw 2393 . . . . . . . . . 10 (∀𝑧(𝐹𝑧) ∈ V → ∀𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V)
12 iunexg 5746 . . . . . . . . . 10 ((dom 𝑔 ∈ V ∧ ∀𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V) → 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V)
135, 11, 12sylancr 393 . . . . . . . . 9 (∀𝑧(𝐹𝑧) ∈ V → 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V)
14 unexg 4178 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V) → (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) ∈ V)
1513, 14sylan2 270 . . . . . . . 8 ((𝐴 ∈ V ∧ ∀𝑧(𝐹𝑧) ∈ V) → (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) ∈ V)
1615ancoms 255 . . . . . . 7 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴 ∈ V) → (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) ∈ V)
1716ralrimivw 2393 . . . . . 6 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴 ∈ V) → ∀𝑔 ∈ V (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) ∈ V)
18 dmmptg 4818 . . . . . 6 (∀𝑔 ∈ V (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) ∈ V → dom (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) = V)
1917, 18syl 14 . . . . 5 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴 ∈ V) → dom (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) = V)
203, 19syl5eleqr 2127 . . . 4 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴 ∈ V) → 𝑓 ∈ dom (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
21 funfvex 5192 . . . 4 ((Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) ∧ 𝑓 ∈ dom (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))) → ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V)
222, 20, 21sylancr 393 . . 3 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴 ∈ V) → ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V)
2322, 2jctil 295 . 2 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴 ∈ V) → (Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) ∧ ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V))
241, 23sylan2 270 1 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → (Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) ∧ ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wal 1241   = wceq 1243  wcel 1393  wral 2306  Vcvv 2557  cun 2915   ciun 3657  cmpt 3818  dom cdm 4345  Fun wfun 4896  cfv 4902
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910
This theorem is referenced by:  rdgifnon2  5967
  Copyright terms: Public domain W3C validator