![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rbaib | GIF version |
Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
rbaib | ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baib.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | ancom 253 | . . 3 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
3 | 1, 2 | bitri 173 | . 2 ⊢ (𝜑 ↔ (𝜒 ∧ 𝜓)) |
4 | 3 | baib 828 | 1 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ↔ wb 98 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: reusv1 4190 opres 4621 cores 4824 fvres 5198 fzsplit2 8914 |
Copyright terms: Public domain | W3C validator |