ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  raliunxp GIF version

Theorem raliunxp 4477
Description: Write a double restricted quantification as one universal quantifier. In this version of ralxp 4479, 𝐵(𝑦) is not assumed to be constant. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypothesis
Ref Expression
ralxp.1 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
Assertion
Ref Expression
raliunxp (∀𝑥 𝑦𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜓)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑧   𝜑,𝑦,𝑧   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)   𝐵(𝑦)

Proof of Theorem raliunxp
StepHypRef Expression
1 eliunxp 4475 . . . . . 6 (𝑥 𝑦𝐴 ({𝑦} × 𝐵) ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)))
21imbi1i 227 . . . . 5 ((𝑥 𝑦𝐴 ({𝑦} × 𝐵) → 𝜑) ↔ (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑))
3 19.23vv 1764 . . . . 5 (∀𝑦𝑧((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑) ↔ (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑))
42, 3bitr4i 176 . . . 4 ((𝑥 𝑦𝐴 ({𝑦} × 𝐵) → 𝜑) ↔ ∀𝑦𝑧((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑))
54albii 1359 . . 3 (∀𝑥(𝑥 𝑦𝐴 ({𝑦} × 𝐵) → 𝜑) ↔ ∀𝑥𝑦𝑧((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑))
6 alrot3 1374 . . . 4 (∀𝑥𝑦𝑧((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑) ↔ ∀𝑦𝑧𝑥((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑))
7 impexp 250 . . . . . . 7 (((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ → ((𝑦𝐴𝑧𝐵) → 𝜑)))
87albii 1359 . . . . . 6 (∀𝑥((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑) ↔ ∀𝑥(𝑥 = ⟨𝑦, 𝑧⟩ → ((𝑦𝐴𝑧𝐵) → 𝜑)))
9 vex 2560 . . . . . . . 8 𝑦 ∈ V
10 vex 2560 . . . . . . . 8 𝑧 ∈ V
119, 10opex 3966 . . . . . . 7 𝑦, 𝑧⟩ ∈ V
12 ralxp.1 . . . . . . . 8 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
1312imbi2d 219 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑧⟩ → (((𝑦𝐴𝑧𝐵) → 𝜑) ↔ ((𝑦𝐴𝑧𝐵) → 𝜓)))
1411, 13ceqsalv 2584 . . . . . 6 (∀𝑥(𝑥 = ⟨𝑦, 𝑧⟩ → ((𝑦𝐴𝑧𝐵) → 𝜑)) ↔ ((𝑦𝐴𝑧𝐵) → 𝜓))
158, 14bitri 173 . . . . 5 (∀𝑥((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑) ↔ ((𝑦𝐴𝑧𝐵) → 𝜓))
16152albii 1360 . . . 4 (∀𝑦𝑧𝑥((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑) ↔ ∀𝑦𝑧((𝑦𝐴𝑧𝐵) → 𝜓))
176, 16bitri 173 . . 3 (∀𝑥𝑦𝑧((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑) ↔ ∀𝑦𝑧((𝑦𝐴𝑧𝐵) → 𝜓))
185, 17bitri 173 . 2 (∀𝑥(𝑥 𝑦𝐴 ({𝑦} × 𝐵) → 𝜑) ↔ ∀𝑦𝑧((𝑦𝐴𝑧𝐵) → 𝜓))
19 df-ral 2311 . 2 (∀𝑥 𝑦𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑥(𝑥 𝑦𝐴 ({𝑦} × 𝐵) → 𝜑))
20 r2al 2343 . 2 (∀𝑦𝐴𝑧𝐵 𝜓 ↔ ∀𝑦𝑧((𝑦𝐴𝑧𝐵) → 𝜓))
2118, 19, 203bitr4i 201 1 (∀𝑥 𝑦𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  wal 1241   = wceq 1243  wex 1381  wcel 1393  wral 2306  {csn 3375  cop 3378   ciun 3657   × cxp 4343
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-iun 3659  df-opab 3819  df-xp 4351  df-rel 4352
This theorem is referenced by:  ralxp  4479  fmpt2x  5826
  Copyright terms: Public domain W3C validator