ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabsnt GIF version

Theorem rabsnt 3445
Description: Truth implied by equality of a restricted class abstraction and a singleton. (Contributed by NM, 29-May-2006.) (Proof shortened by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
rabsnt.1 𝐵 ∈ V
rabsnt.2 (𝑥 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
rabsnt ({𝑥𝐴𝜑} = {𝐵} → 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabsnt
StepHypRef Expression
1 rabsnt.1 . . . 4 𝐵 ∈ V
21snid 3402 . . 3 𝐵 ∈ {𝐵}
3 id 19 . . 3 ({𝑥𝐴𝜑} = {𝐵} → {𝑥𝐴𝜑} = {𝐵})
42, 3syl5eleqr 2127 . 2 ({𝑥𝐴𝜑} = {𝐵} → 𝐵 ∈ {𝑥𝐴𝜑})
5 rabsnt.2 . . . 4 (𝑥 = 𝐵 → (𝜑𝜓))
65elrab 2698 . . 3 (𝐵 ∈ {𝑥𝐴𝜑} ↔ (𝐵𝐴𝜓))
76simprbi 260 . 2 (𝐵 ∈ {𝑥𝐴𝜑} → 𝜓)
84, 7syl 14 1 ({𝑥𝐴𝜑} = {𝐵} → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 98   = wceq 1243  wcel 1393  {crab 2310  Vcvv 2557  {csn 3375
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rab 2315  df-v 2559  df-sn 3381
This theorem is referenced by:  ontr2exmid  4250  onsucsssucexmid  4252  ordsoexmid  4286
  Copyright terms: Public domain W3C validator