Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.27mv Structured version   GIF version

Theorem r19.27mv 3311
 Description: Restricted quantifier version of Theorem 19.27 of [Margaris] p. 90. It is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 5-Aug-2018.)
Assertion
Ref Expression
r19.27mv (x x A → (x A (φ ψ) ↔ (x A φ ψ)))
Distinct variable groups:   x,A   ψ,x
Allowed substitution hint:   φ(x)

Proof of Theorem r19.27mv
StepHypRef Expression
1 nfv 1418 . 2 xψ
21r19.27m 3310 1 (x x A → (x A (φ ψ) ↔ (x A φ ψ)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ↔ wb 98  ∃wex 1378   ∈ wcel 1390  ∀wral 2300 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019 This theorem depends on definitions:  df-bi 110  df-nf 1347  df-cleq 2030  df-clel 2033  df-ral 2305 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator