ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwundifss GIF version

Theorem pwundifss 4022
Description: Break up the power class of a union into a union of smaller classes. (Contributed by Jim Kingdon, 30-Sep-2018.)
Assertion
Ref Expression
pwundifss ((𝒫 (𝐴𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴) ⊆ 𝒫 (𝐴𝐵)

Proof of Theorem pwundifss
StepHypRef Expression
1 undif1ss 3298 . 2 ((𝒫 (𝐴𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴) ⊆ (𝒫 (𝐴𝐵) ∪ 𝒫 𝐴)
2 pwunss 4020 . . . . 5 (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴𝐵)
3 unss 3117 . . . . 5 ((𝒫 𝐴 ⊆ 𝒫 (𝐴𝐵) ∧ 𝒫 𝐵 ⊆ 𝒫 (𝐴𝐵)) ↔ (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴𝐵))
42, 3mpbir 134 . . . 4 (𝒫 𝐴 ⊆ 𝒫 (𝐴𝐵) ∧ 𝒫 𝐵 ⊆ 𝒫 (𝐴𝐵))
54simpli 104 . . 3 𝒫 𝐴 ⊆ 𝒫 (𝐴𝐵)
6 ssequn2 3116 . . 3 (𝒫 𝐴 ⊆ 𝒫 (𝐴𝐵) ↔ (𝒫 (𝐴𝐵) ∪ 𝒫 𝐴) = 𝒫 (𝐴𝐵))
75, 6mpbi 133 . 2 (𝒫 (𝐴𝐵) ∪ 𝒫 𝐴) = 𝒫 (𝐴𝐵)
81, 7sseqtri 2977 1 ((𝒫 (𝐴𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴) ⊆ 𝒫 (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wa 97   = wceq 1243  cdif 2914  cun 2915  wss 2917  𝒫 cpw 3359
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator