ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pweqb Structured version   GIF version

Theorem pweqb 3950
Description: Classes are equal if and only if their power classes are equal. Exercise 19 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.)
Assertion
Ref Expression
pweqb (A = B ↔ 𝒫 A = 𝒫 B)

Proof of Theorem pweqb
StepHypRef Expression
1 sspwb 3943 . . 3 (AB ↔ 𝒫 A ⊆ 𝒫 B)
2 sspwb 3943 . . 3 (BA ↔ 𝒫 B ⊆ 𝒫 A)
31, 2anbi12i 433 . 2 ((AB BA) ↔ (𝒫 A ⊆ 𝒫 B 𝒫 B ⊆ 𝒫 A))
4 eqss 2954 . 2 (A = B ↔ (AB BA))
5 eqss 2954 . 2 (𝒫 A = 𝒫 B ↔ (𝒫 A ⊆ 𝒫 B 𝒫 B ⊆ 𝒫 A))
63, 4, 53bitr4i 201 1 (A = B ↔ 𝒫 A = 𝒫 B)
Colors of variables: wff set class
Syntax hints:   wa 97  wb 98   = wceq 1242  wss 2911  𝒫 cpw 3351
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator