![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prid2 | GIF version |
Description: An unordered pair contains its second member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
prid2.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
prid2 | ⊢ 𝐵 ∈ {𝐴, 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prid2.1 | . . 3 ⊢ 𝐵 ∈ V | |
2 | 1 | prid1 3476 | . 2 ⊢ 𝐵 ∈ {𝐵, 𝐴} |
3 | prcom 3446 | . 2 ⊢ {𝐵, 𝐴} = {𝐴, 𝐵} | |
4 | 2, 3 | eleqtri 2112 | 1 ⊢ 𝐵 ∈ {𝐴, 𝐵} |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1393 Vcvv 2557 {cpr 3376 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-un 2922 df-sn 3381 df-pr 3382 |
This theorem is referenced by: prel12 3542 opi2 3970 opeluu 4182 ontr2exmid 4250 onsucelsucexmid 4255 regexmidlemm 4257 ordtri2or2exmid 4296 dmrnssfld 4595 funopg 4934 acexmidlema 5503 acexmidlemcase 5507 acexmidlem2 5509 2dom 6285 cnelprrecn 7017 mnfxr 8694 m1expcl2 9277 bdop 9995 |
Copyright terms: Public domain | W3C validator |