![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prarloclemn | GIF version |
Description: Subtracting two from a positive integer. Lemma for prarloc 6601. (Contributed by Jim Kingdon, 5-Nov-2019.) |
Ref | Expression |
---|---|
prarloclemn | ⊢ ((𝑁 ∈ N ∧ 1𝑜 <N 𝑁) → ∃𝑥 ∈ ω (2𝑜 +𝑜 𝑥) = 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 102 | . . 3 ⊢ ((𝑁 ∈ N ∧ 1𝑜 <N 𝑁) → 𝑁 ∈ N) | |
2 | 1pi 6413 | . . . . 5 ⊢ 1𝑜 ∈ N | |
3 | ltpiord 6417 | . . . . 5 ⊢ ((1𝑜 ∈ N ∧ 𝑁 ∈ N) → (1𝑜 <N 𝑁 ↔ 1𝑜 ∈ 𝑁)) | |
4 | 2, 3 | mpan 400 | . . . 4 ⊢ (𝑁 ∈ N → (1𝑜 <N 𝑁 ↔ 1𝑜 ∈ 𝑁)) |
5 | 4 | biimpa 280 | . . 3 ⊢ ((𝑁 ∈ N ∧ 1𝑜 <N 𝑁) → 1𝑜 ∈ 𝑁) |
6 | piord 6409 | . . . 4 ⊢ (𝑁 ∈ N → Ord 𝑁) | |
7 | ordsucss 4230 | . . . 4 ⊢ (Ord 𝑁 → (1𝑜 ∈ 𝑁 → suc 1𝑜 ⊆ 𝑁)) | |
8 | 6, 7 | syl 14 | . . 3 ⊢ (𝑁 ∈ N → (1𝑜 ∈ 𝑁 → suc 1𝑜 ⊆ 𝑁)) |
9 | 1, 5, 8 | sylc 56 | . 2 ⊢ ((𝑁 ∈ N ∧ 1𝑜 <N 𝑁) → suc 1𝑜 ⊆ 𝑁) |
10 | df-2o 6002 | . . . 4 ⊢ 2𝑜 = suc 1𝑜 | |
11 | 10 | sseq1i 2969 | . . 3 ⊢ (2𝑜 ⊆ 𝑁 ↔ suc 1𝑜 ⊆ 𝑁) |
12 | pinn 6407 | . . . . 5 ⊢ (𝑁 ∈ N → 𝑁 ∈ ω) | |
13 | 2onn 6094 | . . . . . 6 ⊢ 2𝑜 ∈ ω | |
14 | nnawordex 6101 | . . . . . 6 ⊢ ((2𝑜 ∈ ω ∧ 𝑁 ∈ ω) → (2𝑜 ⊆ 𝑁 ↔ ∃𝑥 ∈ ω (2𝑜 +𝑜 𝑥) = 𝑁)) | |
15 | 13, 14 | mpan 400 | . . . . 5 ⊢ (𝑁 ∈ ω → (2𝑜 ⊆ 𝑁 ↔ ∃𝑥 ∈ ω (2𝑜 +𝑜 𝑥) = 𝑁)) |
16 | 12, 15 | syl 14 | . . . 4 ⊢ (𝑁 ∈ N → (2𝑜 ⊆ 𝑁 ↔ ∃𝑥 ∈ ω (2𝑜 +𝑜 𝑥) = 𝑁)) |
17 | 16 | adantr 261 | . . 3 ⊢ ((𝑁 ∈ N ∧ 1𝑜 <N 𝑁) → (2𝑜 ⊆ 𝑁 ↔ ∃𝑥 ∈ ω (2𝑜 +𝑜 𝑥) = 𝑁)) |
18 | 11, 17 | syl5bbr 183 | . 2 ⊢ ((𝑁 ∈ N ∧ 1𝑜 <N 𝑁) → (suc 1𝑜 ⊆ 𝑁 ↔ ∃𝑥 ∈ ω (2𝑜 +𝑜 𝑥) = 𝑁)) |
19 | 9, 18 | mpbid 135 | 1 ⊢ ((𝑁 ∈ N ∧ 1𝑜 <N 𝑁) → ∃𝑥 ∈ ω (2𝑜 +𝑜 𝑥) = 𝑁) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ↔ wb 98 = wceq 1243 ∈ wcel 1393 ∃wrex 2307 ⊆ wss 2917 class class class wbr 3764 Ord word 4099 suc csuc 4102 ωcom 4313 (class class class)co 5512 1𝑜c1o 5994 2𝑜c2o 5995 +𝑜 coa 5998 Ncnpi 6370 <N clti 6373 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-coll 3872 ax-sep 3875 ax-nul 3883 ax-pow 3927 ax-pr 3944 ax-un 4170 ax-setind 4262 ax-iinf 4311 |
This theorem depends on definitions: df-bi 110 df-3or 886 df-3an 887 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-ral 2311 df-rex 2312 df-reu 2313 df-rab 2315 df-v 2559 df-sbc 2765 df-csb 2853 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-nul 3225 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-int 3616 df-iun 3659 df-br 3765 df-opab 3819 df-mpt 3820 df-tr 3855 df-eprel 4026 df-id 4030 df-iord 4103 df-on 4105 df-suc 4108 df-iom 4314 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 df-iota 4867 df-fun 4904 df-fn 4905 df-f 4906 df-f1 4907 df-fo 4908 df-f1o 4909 df-fv 4910 df-ov 5515 df-oprab 5516 df-mpt2 5517 df-1st 5767 df-2nd 5768 df-recs 5920 df-irdg 5957 df-1o 6001 df-2o 6002 df-oadd 6005 df-ni 6402 df-lti 6405 |
This theorem is referenced by: prarloclem5 6598 |
Copyright terms: Public domain | W3C validator |