ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclem Structured version   GIF version

Theorem prarloclem 6349
Description: A special case of Lemma 6.16 from [BauerTaylor], p. 32. Given evenly spaced rational numbers from A to A +Q (𝑁 ·Q 𝑃) (which are in the lower and upper cuts, respectively, of a real number), there are a pair of numbers, two positions apart in the even spacing, which straddle the cut. (Contributed by Jim Kingdon, 22-Oct-2019.)
Assertion
Ref Expression
prarloclem (((⟨𝐿, 𝑈 P A 𝐿) (𝑁 N 𝑃 Q 1𝑜 <N 𝑁) (A +Q ([⟨𝑁, 1𝑜⟩] ~Q ·Q 𝑃)) 𝑈) → 𝑗 𝜔 ((A +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) 𝐿 (A +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) 𝑈))
Distinct variable groups:   A,𝑗   𝑗,𝐿   𝑗,𝑁   𝑃,𝑗   𝑈,𝑗

Proof of Theorem prarloclem
Dummy variables x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prarloclem5 6348 . 2 (((⟨𝐿, 𝑈 P A 𝐿) (𝑁 N 𝑃 Q 1𝑜 <N 𝑁) (A +Q ([⟨𝑁, 1𝑜⟩] ~Q ·Q 𝑃)) 𝑈) → x 𝜔 y 𝜔 ((A +Q0 ([⟨y, 1𝑜⟩] ~Q0 ·Q0 𝑃)) 𝐿 (A +Q ([⟨((y +𝑜 2𝑜) +𝑜 x), 1𝑜⟩] ~Q ·Q 𝑃)) 𝑈))
2 prarloclem4 6346 . . . 4 (((⟨𝐿, 𝑈 P A 𝐿) 𝑃 Q) → (x 𝜔 y 𝜔 ((A +Q0 ([⟨y, 1𝑜⟩] ~Q0 ·Q0 𝑃)) 𝐿 (A +Q ([⟨((y +𝑜 2𝑜) +𝑜 x), 1𝑜⟩] ~Q ·Q 𝑃)) 𝑈) → 𝑗 𝜔 ((A +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) 𝐿 (A +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) 𝑈)))
323ad2antr2 1056 . . 3 (((⟨𝐿, 𝑈 P A 𝐿) (𝑁 N 𝑃 Q 1𝑜 <N 𝑁)) → (x 𝜔 y 𝜔 ((A +Q0 ([⟨y, 1𝑜⟩] ~Q0 ·Q0 𝑃)) 𝐿 (A +Q ([⟨((y +𝑜 2𝑜) +𝑜 x), 1𝑜⟩] ~Q ·Q 𝑃)) 𝑈) → 𝑗 𝜔 ((A +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) 𝐿 (A +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) 𝑈)))
433adant3 910 . 2 (((⟨𝐿, 𝑈 P A 𝐿) (𝑁 N 𝑃 Q 1𝑜 <N 𝑁) (A +Q ([⟨𝑁, 1𝑜⟩] ~Q ·Q 𝑃)) 𝑈) → (x 𝜔 y 𝜔 ((A +Q0 ([⟨y, 1𝑜⟩] ~Q0 ·Q0 𝑃)) 𝐿 (A +Q ([⟨((y +𝑜 2𝑜) +𝑜 x), 1𝑜⟩] ~Q ·Q 𝑃)) 𝑈) → 𝑗 𝜔 ((A +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) 𝐿 (A +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) 𝑈)))
51, 4mpd 13 1 (((⟨𝐿, 𝑈 P A 𝐿) (𝑁 N 𝑃 Q 1𝑜 <N 𝑁) (A +Q ([⟨𝑁, 1𝑜⟩] ~Q ·Q 𝑃)) 𝑈) → 𝑗 𝜔 ((A +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) 𝐿 (A +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) 𝑈))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97   w3a 871   wcel 1370  wrex 2281  cop 3349   class class class wbr 3734  𝜔com 4236  (class class class)co 5432  1𝑜c1o 5905  2𝑜c2o 5906   +𝑜 coa 5909  [cec 6011  Ncnpi 6126   <N clti 6129   ~Q ceq 6133  Qcnq 6134   +Q cplq 6136   ·Q cmq 6137   ~Q0 ceq0 6140   +Q0 cplq0 6143   ·Q0 cmq0 6144  Pcnp 6145
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 532  ax-in2 533  ax-io 617  ax-5 1312  ax-7 1313  ax-gen 1314  ax-ie1 1359  ax-ie2 1360  ax-8 1372  ax-10 1373  ax-11 1374  ax-i12 1375  ax-bnd 1376  ax-4 1377  ax-13 1381  ax-14 1382  ax-17 1396  ax-i9 1400  ax-ial 1405  ax-i5r 1406  ax-ext 2000  ax-coll 3842  ax-sep 3845  ax-nul 3853  ax-pow 3897  ax-pr 3914  ax-un 4116  ax-setind 4200  ax-iinf 4234
This theorem depends on definitions:  df-bi 110  df-dc 731  df-3or 872  df-3an 873  df-tru 1229  df-fal 1232  df-nf 1326  df-sb 1624  df-eu 1881  df-mo 1882  df-clab 2005  df-cleq 2011  df-clel 2014  df-nfc 2145  df-ne 2184  df-ral 2285  df-rex 2286  df-reu 2287  df-rab 2289  df-v 2533  df-sbc 2738  df-csb 2826  df-dif 2893  df-un 2895  df-in 2897  df-ss 2904  df-nul 3198  df-pw 3332  df-sn 3352  df-pr 3353  df-op 3355  df-uni 3551  df-int 3586  df-iun 3629  df-br 3735  df-opab 3789  df-mpt 3790  df-tr 3825  df-eprel 3996  df-id 4000  df-iord 4048  df-on 4050  df-suc 4053  df-iom 4237  df-xp 4274  df-rel 4275  df-cnv 4276  df-co 4277  df-dm 4278  df-rn 4279  df-res 4280  df-ima 4281  df-iota 4790  df-fun 4827  df-fn 4828  df-f 4829  df-f1 4830  df-fo 4831  df-f1o 4832  df-fv 4833  df-ov 5435  df-oprab 5436  df-mpt2 5437  df-1st 5686  df-2nd 5687  df-recs 5838  df-irdg 5874  df-1o 5912  df-2o 5913  df-oadd 5916  df-omul 5917  df-er 6013  df-ec 6015  df-qs 6019  df-ni 6158  df-pli 6159  df-mi 6160  df-lti 6161  df-plpq 6197  df-mpq 6198  df-enq 6200  df-nqqs 6201  df-plqqs 6202  df-mqqs 6203  df-ltnqqs 6206  df-enq0 6273  df-nq0 6274  df-0nq0 6275  df-plq0 6276  df-mq0 6277  df-inp 6314
This theorem is referenced by:  prarloc  6351
  Copyright terms: Public domain W3C validator