ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  potr GIF version

Theorem potr 4036
Description: A partial order relation is a transitive relation. (Contributed by NM, 27-Mar-1997.)
Assertion
Ref Expression
potr ((𝑅 Po A (B A 𝐶 A 𝐷 A)) → ((B𝑅𝐶 𝐶𝑅𝐷) → B𝑅𝐷))

Proof of Theorem potr
StepHypRef Expression
1 pocl 4031 . . 3 (𝑅 Po A → ((B A 𝐶 A 𝐷 A) → (¬ B𝑅B ((B𝑅𝐶 𝐶𝑅𝐷) → B𝑅𝐷))))
21imp 115 . 2 ((𝑅 Po A (B A 𝐶 A 𝐷 A)) → (¬ B𝑅B ((B𝑅𝐶 𝐶𝑅𝐷) → B𝑅𝐷)))
32simprd 107 1 ((𝑅 Po A (B A 𝐶 A 𝐷 A)) → ((B𝑅𝐶 𝐶𝑅𝐷) → B𝑅𝐷))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   wa 97   w3a 884   wcel 1390   class class class wbr 3755   Po wpo 4022
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-v 2553  df-un 2916  df-sn 3373  df-pr 3374  df-op 3376  df-br 3756  df-po 4024
This theorem is referenced by:  po2nr  4037  po3nr  4038  pofun  4040  sotr  4046  issod  4047  poltletr  4668  poxp  5794
  Copyright terms: Public domain W3C validator