![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm5.74i | GIF version |
Description: Distribution of implication over biconditional (inference rule). (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
pm5.74i.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
pm5.74i | ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.74i.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | pm5.74 168 | . 2 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) | |
3 | 1, 2 | mpbi 133 | 1 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 98 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: bitrd 177 imbi2i 215 bibi2d 221 ibib 234 ibibr 235 anclb 302 pm5.42 303 ancrb 305 equsalh 1614 equsal 1615 sb6a 1864 ralbiia 2338 raaan 3327 |
Copyright terms: Public domain | W3C validator |