ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.501 Structured version   GIF version

Theorem pm5.501 233
Description: Theorem *5.501 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) (Revised by NM, 24-Jan-2013.)
Assertion
Ref Expression
pm5.501 (φ → (ψ ↔ (φψ)))

Proof of Theorem pm5.501
StepHypRef Expression
1 pm5.1im 162 . 2 (φ → (ψ → (φψ)))
2 bi1 111 . . 3 ((φψ) → (φψ))
32com12 27 . 2 (φ → ((φψ) → ψ))
41, 3impbid 120 1 (φ → (ψ ↔ (φψ)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 98
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  ibib  234  ibibr  235  pm5.1  520  pm5.18dc  765  biassdc  1267
  Copyright terms: Public domain W3C validator