ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.33 GIF version

Theorem pm5.33 541
Description: Theorem *5.33 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm5.33 ((φ (ψχ)) ↔ (φ ((φ ψ) → χ)))

Proof of Theorem pm5.33
StepHypRef Expression
1 ibar 285 . . 3 (φ → (ψ ↔ (φ ψ)))
21imbi1d 220 . 2 (φ → ((ψχ) ↔ ((φ ψ) → χ)))
32pm5.32i 427 1 ((φ (ψχ)) ↔ (φ ((φ ψ) → χ)))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97  wb 98
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator