ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.31 Structured version   GIF version

Theorem pm5.31 330
Description: Theorem *5.31 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm5.31 ((χ (φψ)) → (φ → (ψ χ)))

Proof of Theorem pm5.31
StepHypRef Expression
1 pm3.21 251 . . 3 (χ → (ψ → (ψ χ)))
21imim2d 48 . 2 (χ → ((φψ) → (φ → (ψ χ))))
32imp 115 1 ((χ (φψ)) → (φ → (ψ χ)))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator