Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.14dc Structured version   GIF version

Theorem pm5.14dc 816
 Description: A decidable proposition is implied by or implies other propositions. Based on theorem *5.14 of [WhiteheadRussell] p. 123. (Contributed by Jim Kingdon, 30-Mar-2018.)
Assertion
Ref Expression
pm5.14dc (DECID ψ → ((φψ) (ψχ)))

Proof of Theorem pm5.14dc
StepHypRef Expression
1 df-dc 742 . 2 (DECID ψ ↔ (ψ ¬ ψ))
2 ax-1 5 . . 3 (ψ → (φψ))
3 ax-in2 545 . . 3 ψ → (ψχ))
42, 3orim12i 675 . 2 ((ψ ¬ ψ) → ((φψ) (ψχ)))
51, 4sylbi 114 1 (DECID ψ → ((φψ) (ψχ)))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∨ wo 628  DECID wdc 741 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in2 545  ax-io 629 This theorem depends on definitions:  df-bi 110  df-dc 742 This theorem is referenced by:  pm5.13dc  817
 Copyright terms: Public domain W3C validator