ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.43 GIF version

Theorem pm4.43 856
Description: Theorem *4.43 of [WhiteheadRussell] p. 119. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 26-Nov-2012.)
Assertion
Ref Expression
pm4.43 (𝜑 ↔ ((𝜑𝜓) ∧ (𝜑 ∨ ¬ 𝜓)))

Proof of Theorem pm4.43
StepHypRef Expression
1 pm3.24 627 . . 3 ¬ (𝜓 ∧ ¬ 𝜓)
21biorfi 665 . 2 (𝜑 ↔ (𝜑 ∨ (𝜓 ∧ ¬ 𝜓)))
3 ordi 729 . 2 ((𝜑 ∨ (𝜓 ∧ ¬ 𝜓)) ↔ ((𝜑𝜓) ∧ (𝜑 ∨ ¬ 𝜓)))
42, 3bitri 173 1 (𝜑 ↔ ((𝜑𝜓) ∧ (𝜑 ∨ ¬ 𝜓)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 97  wb 98  wo 629
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630
This theorem depends on definitions:  df-bi 110
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator