ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.24 GIF version

Theorem pm4.24 375
Description: Theorem *4.24 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-2005.) (Revised by NM, 14-Mar-2014.)
Assertion
Ref Expression
pm4.24 (φ ↔ (φ φ))

Proof of Theorem pm4.24
StepHypRef Expression
1 id 19 . 2 (φφ)
21pm4.71i 371 1 (φ ↔ (φ φ))
Colors of variables: wff set class
Syntax hints:   wa 97  wb 98
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  anidm  376  anabsan  509  sbidm  1728  euind  2722  reuind  2738
  Copyright terms: Public domain W3C validator