ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm3.44 Structured version   GIF version

Theorem pm3.44 622
Description: Theorem *3.44 of [WhiteheadRussell] p. 113. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 3-Oct-2013.)
Assertion
Ref Expression
pm3.44 (((ψφ) (χφ)) → ((ψ χ) → φ))

Proof of Theorem pm3.44
StepHypRef Expression
1 jaob 618 . 2 (((ψ χ) → φ) ↔ ((ψφ) (χφ)))
21biimpri 124 1 (((ψφ) (χφ)) → ((ψ χ) → φ))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97   wo 616
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  jaoi  623  jao  659  pm2.6dc  752  pm4.83dc  846
  Copyright terms: Public domain W3C validator