ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm3.35 Structured version   GIF version

Theorem pm3.35 329
Description: Conjunctive detachment. Theorem *3.35 of [WhiteheadRussell] p. 112. (Contributed by NM, 14-Dec-2002.)
Assertion
Ref Expression
pm3.35 ((φ (φψ)) → ψ)

Proof of Theorem pm3.35
StepHypRef Expression
1 pm2.27 35 . 2 (φ → ((φψ) → ψ))
21imp 115 1 ((φ (φψ)) → ψ)
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100
This theorem is referenced by:  xordc1  1281  19.35-1  1512  ax9o  1585  sbequ8  1724  r19.29af2  2446  r19.29vva  2450  r19.35-1  2454  intab  3635
  Copyright terms: Public domain W3C validator