ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm3.31 Structured version   GIF version

Theorem pm3.31 249
Description: Theorem *3.31 (Imp) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 24-Mar-2013.)
Assertion
Ref Expression
pm3.31 ((φ → (ψχ)) → ((φ ψ) → χ))

Proof of Theorem pm3.31
StepHypRef Expression
1 id 19 . 2 ((φ → (ψχ)) → (φ → (ψχ)))
21impd 242 1 ((φ → (ψχ)) → ((φ ψ) → χ))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100
This theorem is referenced by:  impexp  250  imp5a  340  equsexd  1595  mo3h  1931  rexim  2387  peano5  4244  issref  4630  peano5set  7301
  Copyright terms: Public domain W3C validator