ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm3.22 GIF version

Theorem pm3.22 252
Description: Theorem *3.22 of [WhiteheadRussell] p. 111. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 13-Nov-2012.)
Assertion
Ref Expression
pm3.22 ((𝜑𝜓) → (𝜓𝜑))

Proof of Theorem pm3.22
StepHypRef Expression
1 pm3.21 251 . 2 (𝜑 → (𝜓 → (𝜓𝜑)))
21imp 115 1 ((𝜑𝜓) → (𝜓𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem is referenced by:  ancom  253  ancom2s  500  ancom1s  503  eupickb  1981  enq0sym  6530  bj-peano4  10080
  Copyright terms: Public domain W3C validator