 Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm3.11dc GIF version

Theorem pm3.11dc 864
 Description: Theorem *3.11 of [WhiteheadRussell] p. 111, but for decidable propositions. The converse, pm3.1 671, holds for all propositions, not just decidable ones. (Contributed by Jim Kingdon, 22-Apr-2018.)
Assertion
Ref Expression
pm3.11dc (DECID 𝜑 → (DECID 𝜓 → (¬ (¬ 𝜑 ∨ ¬ 𝜓) → (𝜑𝜓))))

Proof of Theorem pm3.11dc
StepHypRef Expression
1 anordc 863 . . . 4 (DECID 𝜑 → (DECID 𝜓 → ((𝜑𝜓) ↔ ¬ (¬ 𝜑 ∨ ¬ 𝜓))))
21imp 115 . . 3 ((DECID 𝜑DECID 𝜓) → ((𝜑𝜓) ↔ ¬ (¬ 𝜑 ∨ ¬ 𝜓)))
32biimprd 147 . 2 ((DECID 𝜑DECID 𝜓) → (¬ (¬ 𝜑 ∨ ¬ 𝜓) → (𝜑𝜓)))
43ex 108 1 (DECID 𝜑 → (DECID 𝜓 → (¬ (¬ 𝜑 ∨ ¬ 𝜓) → (𝜑𝜓))))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 97   ↔ wb 98   ∨ wo 629  DECID wdc 742 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630 This theorem depends on definitions:  df-bi 110  df-dc 743 This theorem is referenced by:  pm3.12dc  865  pm3.13dc  866
 Copyright terms: Public domain W3C validator