ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.621 Structured version   GIF version

Theorem pm2.621 653
Description: Theorem *2.621 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) (Revised by NM, 13-Dec-2013.)
Assertion
Ref Expression
pm2.621 ((φψ) → ((φ ψ) → ψ))

Proof of Theorem pm2.621
StepHypRef Expression
1 id 19 . 2 ((φψ) → (φψ))
2 idd 21 . 2 ((φψ) → (ψψ))
31, 2jaod 624 1 ((φψ) → ((φ ψ) → ψ))
Colors of variables: wff set class
Syntax hints:  wi 4   wo 616
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  pm2.62  654  pm2.73  706  pm4.72  724  undif4  3261
  Copyright terms: Public domain W3C validator