ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.5dc GIF version

Theorem pm2.5dc 763
Description: Negating an implication for a decidable antecedent. Based on theorem *2.5 of [WhiteheadRussell] p. 107. (Contributed by Jim Kingdon, 29-Mar-2018.)
Assertion
Ref Expression
pm2.5dc (DECID 𝜑 → (¬ (𝜑𝜓) → (¬ 𝜑𝜓)))

Proof of Theorem pm2.5dc
StepHypRef Expression
1 simplimdc 757 . . . 4 (DECID 𝜑 → (¬ (𝜑𝜓) → 𝜑))
21imp 115 . . 3 ((DECID 𝜑 ∧ ¬ (𝜑𝜓)) → 𝜑)
32pm2.24d 552 . 2 ((DECID 𝜑 ∧ ¬ (𝜑𝜓)) → (¬ 𝜑𝜓))
43ex 108 1 (DECID 𝜑 → (¬ (𝜑𝜓) → (¬ 𝜑𝜓)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 97  DECID wdc 742
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630
This theorem depends on definitions:  df-bi 110  df-dc 743
This theorem is referenced by:  pm5.11dc  815
  Copyright terms: Public domain W3C validator