ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.51 Structured version   GIF version

Theorem pm2.51 580
Description: Theorem *2.51 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.51 (¬ (φψ) → (φ → ¬ ψ))

Proof of Theorem pm2.51
StepHypRef Expression
1 ax-1 5 . . 3 (ψ → (φψ))
21con3i 561 . 2 (¬ (φψ) → ¬ ψ)
32a1d 22 1 (¬ (φψ) → (φ → ¬ ψ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-in1 544  ax-in2 545
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator