ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.42 Structured version   GIF version

Theorem pm2.42 693
Description: Theorem *2.42 of [WhiteheadRussell] p. 106. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.42 ((¬ φ (φψ)) → (φψ))

Proof of Theorem pm2.42
StepHypRef Expression
1 pm2.21 547 . 2 φ → (φψ))
2 id 19 . 2 ((φψ) → (φψ))
31, 2jaoi 635 1 ((¬ φ (φψ)) → (φψ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   wo 628
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in2 545  ax-io 629
This theorem depends on definitions:  df-bi 110
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator